The composition of liquid methane–nitrogen aerosols in Titan’s lower atmosphere from Monte Carlo simulations
نویسندگان
چکیده
Molecular level Monte Carlo simulations have been performed with various model potentials for the CH4–N2 vapor–liquid equilibrium at conditions prevalent in the atmosphere of Saturn’s moon Titan. With a single potential parameter adjustment to reproduce the vapor–liquid equilibrium at a higher temperature, Monte Carlo simulations are in excellent agreement with available laboratory measurements. The results demonstrate the ability of simple pair potential models to describe phase equilibria with the requisite accuracy for atmospheric modeling, while keeping the number of adjustable parameters at a minimum. This allows for stable extrapolation beyond the range of available laboratory measurements into the supercooled region of the phase diagram, so that Monte Carlo simulations can serve as a reference to validate phenomenological models commonly used in atmospheric modeling. This is most important when the relevant region of the phase diagram lies outside the range of laboratory measurements as in the case of Titan. The present Monte Carlo simulations confirm the validity of phenomenological thermodynamic equations of state specifically designed for application to Titan. The validity extends well into the supercooled region of the phase diagram. The possible range of saturation levels of Titan’s troposphere above altitudes of 7 km is found to be completely determined by the remaining uncertainty of the most recent revision of the Cassini-Huygens data, yielding a saturation of 100 ± 6% with respect to CH4–N2 condensation up to an altitude of about 20 km. 2011 Elsevier Inc. All rights reserved.
منابع مشابه
Impact of aerosols present in Titan’s atmosphere on the CASSINI radar experiment
Simulations of Titan’s atmospheric transmission and surface reflectivity have been developed in order to estimate how Titan’s atmosphere and surface properties could affect performances of the Cassini radar experiment. In this paper we present a selection of models for Titan’s haze, vertical rain distribution, and surface composition implemented in our simulations. We collected dielectric const...
متن کاملIon chemistry and N-containing molecules in Titan’s upper atmosphere
High-energy photons, electrons, and ions initiate ion–neutral chemistry in Titan’s upper atmosphere by ionizing the major neutral species (nitrogen and methane). The Ion and Neutral Mass Spectrometer (INMS) onboard the Cassini spacecraft performed the first composition measurements of Titan’s ionosphere. INMS revealed that Titan has the most compositionally complex ionosphere in the Solar Syste...
متن کاملOptical properties of analogs of Titan’s aerosols produced by dusty plasma
Analogs of Titan’s aerosols are produced in the laboratory as grains in a gas mixture, or as layers on a substrate. This production procedure enables the methane-nitrogen mixture composition to be changed. The aim of this paper is to understand the variations observed on the linear polarization of the scattered light as a function of the production conditions. The influence of the concentration...
متن کاملTitan ’ s upper atmosphere reactivity with a RF - capacitively coupled N 2 - CH 4 plasma
Titan is the largest satellite of Saturn. It has a dense atmosphere of 1.5 bar at the surface mainly composed of nitrogen and methane. One of the most important results delivered by the ongoing Cassini space mission was to affirm that Titan’s aerosols are synthesized in the upper atmosphere [1]. However, the Cassini mission has also highlighted the incompleteness of our knowledge on Titan’s ion...
متن کاملTitan’s past and future: 3D modeling of a pure nitrogen atmosphere and geological implications
Several clues indicate that Titan’s atmosphere has been depleted in methane during some period of its history, possibly as recently as 0.5-1 billion years ago. It could also happen in the future. Under these conditions, the atmosphere becomes only composed of nitrogen with a range of temperature and pressure allowing liquid or solid nitrogen to condense. Here, we explore these exotic climates t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011